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LETTER TO THE EDITOR

Observational line broadening and the duration of a
quantum jump
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Received 3 February 1997

Abstract. Experimental observations of ‘quantum jumps’ suggest that one can associate a
timescale shorter than ‘lifetime’ with quantum transitions; one such ‘jump time’ is proposed
here. We also find that experimental temporal localization of the jumpdoesaffect it (a ĺa Bohr),
and predict an ‘observational line broadening’.

1. Introduction

How quick is a quantum jump? Experiments performed 10 years ago [1] in which jumps
were observed permit concrete meaning to be attached to this question. An atom in a
(long-lived) metastable state is bathed in light at the frequency of another of its transitions.
Departure from the metastable state is marked—measured—by the onset of fluorescence
at that other frequency. This onset is sudden at the time resolution of the experiments.
Presumably, the passage from the metastable state to the ground state occurs on a scale
more rapid than the lifetime, just as for quantum tunnelling. There has been a great deal of
interest [2] in assigning a ‘tunnelling time’ to the latter sort of transition. Can any sense be
made of the more general case?

By way of confirmation, in the aforementioned experiments the lifetime of the metastable
state was checked, and found to agree within experimental error with values previously
known. One might ask, according to the views advocated by Bohr, whether the ‘observation’
of this decay should not affect it in any way.

We show in this letter that observation of the decaydoesaffect it, and that this effect is
a line broadening (or splitting) that increases as the precision of temporal localization—the
quickness of the jump—increases.

In the first part of the letter we discuss the timescale for the quantum jump, then
provide corroborative evidence for this result, followed by estimates of minimal jump times
for certain transitions. In the second part we calculate the changes in the properties of
the transition due to its being under observation, and in particular consider the changes in
the line shape—what we call ‘observational broadening’—due to this observation. We also
discuss points related to an experimental search for this effect.

2. Jump time

The definition of the timescale for a quantum jump is based on the idea that if a system is
disturbed at intervals1t , but those disturbances do not affect the decay, then1t is longer
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than the jump. On the other hand, if one does manage thereby to affect the decay, then its
time scale is reached. As the disturbance to be used in the definition we take a projection
onto the original state—a check on whether the system has decayed. In this way we arrive
at a formal context similar to that in the so-called quantum Zeno effect (QZE) [3, 4].

Let the system begin in a stateψ and let the full Hamiltonian beH . After a time1t ,
ψ evolves to exp(−iH1t/h̄)|ψ〉. One checks for decay by applying〈ψ |. The probability
that it is still inψ is p(1t) = |〈ψ | exp(−iH1t/h̄)|ψ〉|2. By familiar manipulations [5] this
can be written

p(1t) = 1−
(
1t

τZ

)2

O(1t4) (1)

with Eψ ≡ 〈ψ |H |ψ〉 and

τ 2
Z ≡

h̄2

〈ψ |(H − Eψ)2|ψ〉 . (2)

Call τZ the ‘Zeno time,’ notwithstanding the lack of full concurrence with the classical
allusion [5].

Suppose many projections are made during a timet , carried out at intervals1t . Then
to leading order at timet the probability of being inψ is

pInterrupted= [p(1t)]t/1t =
[

1−
(
1t

t

t1t

τ 2
Z

)]t/1t
≈ exp(−t1t/τ 2

Z). (3)

To define a jump time, we want to know whether this differs from standard decay. Without
projections the probability for being inψ is

pUninterrupted= exp(−t/τL) (4)

with τL the usual lifetime. When the ‘Golden rule’ can be usedτL is given by

1/τL = 2πρ(Eψ)|〈f |H |ψ〉|2/h̄ (5)

with |f 〉 the final state, andρ the density of states (at the energy of the initial state).
Comparing equation (3) and (4), we see that the interrupted decay will be slower for
1t < τ 2

Z/τL. (Reversing the inequality suggestsfasterdecay, but in fact signifies breakdown
in the expansion.) We are thus led to define the ‘jump time’ as the time for which the slow
down would begin to be significant, namely

τJ ≡ τ 2
Z/τL . (6)

In words,τJ is the time such that if one inspected a system’s integrity at intervals of this
duration, the decay would be affected.

We offer two pieces of corroborative evidence for equation (6). First, for barrier
penetration one does have an idea of what the tunnelling time is and it ought to be the
same scale as the jump time. In [5] there is a calculation of the Zeno time, and it was
found to be related to the tunnelling time in the following way:τ 2

Z = τLτT, with τT the
semiclassical tunnelling time. Second, in [6] there is an explicit theoretical calculation of
a quantum jump. That is, a system ordinarily decays at a certain rate, but when prepared
in a special way it can be forced to decay much more quickly. The relation between the
various times—the lifetime, the forced-decay time and the inverse of the appropriate matrix
elements of the Hamiltonian—are found to satisfy equation (6). (More details are found in
[7] and the dramatic ‘jump’ is illustrated in the figures in [6].)



Letter to the Editor L295

An interpretation ofτJ in terms of bandwidth and uncertainty relations can be found by
combining equation (2), forτZ, with (5), for lifetime. After some manipulation one obtains

τJ = 1

/∫
dE

h̄

ρ(E)|〈E|H − Eψ |ψ〉|2
ρ(Eψ)|〈f |H |ψ〉|2 . (7)

Because of the orthogonality of the initial and final states, one can insert a ‘−Eψ ’ into the
Golden rule matrix element. Thus the ratio

ρ(E)|〈E|H − Eψ |ψ〉|2
ρ(Eψ)|〈f |H |ψ〉|2

takes the value 1 whenE passes throughEψ . In effect, this ratio measures the ability of
the HamiltonianH to move the system away from its initial state. One thus has a band of
accessible transition states.

Clearly,τJ is (the inverse of) an integral over energies (or frequencies) of an order unity
function describing the modulation of the band of accessible states. It follows thatτJ is
the inverse bandwidth for the transition. This is a completely reasonable conclusion: one
would like to create a situation where the system’s transition is sudden. The success is
governed by the frequencies available. The accessibility of those frequencies is the essence
of the bandwidth.

It is of interest to see whetherτJ could be of practical significance, whether there are
transitions where one could catch them in the act, so to speak. We will see that for atomic
transitions this would be rather difficult, but that in other cases, not only is it possible, but
that in a sense it is going on all the time.

First, we make a rough estimate ofτJ for atomic transitions. We start from the standard
HamiltonianH = (p − eA/c)2/2m + V + HEM, free. Noting, from equation (7), that only
transition elements are of interest, to a good approximation we need only be concerned with
〈0|p ·A|ψ〉 with 0 the ground state andψ the decaying state. From (7) we also see that
only the ratio of densities of states is of interest, introducing a factor(k/k0)

2 [8] (with k0

the wavenumber for theψ → 0 transition). Finally we note that the momentumk portion
of the field operatorA contains exp(ikr), and thatr can be written i∂/∂p. (A also contains
a 1/
√
k contribution from its normalization.) Combining all these observations, after little

manipulation one finds

τJ = 2πa

c

1

I
with I = a

∫
dk
k

k0

| ∫ d3pψ∗0 (p)pψ(p + k)|2
| ∫ d3pψ∗0 (p)pψ(p + k0)|2 (8)

with I dimensionless anda a (not yet specified) quantity with dimensions of length.
To obtain a number from this it is convenient to takea to be the Bohr radius and use

momentum space atomic wavefunctions. For the ground state we use 1/(p2 + 1)2 and
for the excited state we take a p-state, with dependencepz/(p

2 + 1/4)3 (see, e.g., [9]).
This leads to integrals that can easily be performed numerically. Combining all relevant
terms it turns out thatI ≈ 102 so that forτJ we find the remarkably small value, 10−20 s.
This brevity, 1/100 the time for the electron to circle the nucleus, is reminiscent of the
superluminal transmission one encounters in some tunnelling calculations; however, since
there is no specific distance to be covered there is no corresponding paradox. What might
be puzzling here would be the suggestion that this short time could imply a correspondingly
high energy. We will see below that indeed observation of a short time would bring in new
energy scales, not as a property of the atom alone, but in conjunction with the ‘apparatus’
performing the observation.
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We next turn to situations where the value of the jump time is closer to the experimentally
accessible regime and experimental consequences of our definition may be noted. For
example, a reasonable bandwidth for phonon mediated transitions is 100 meV. For this

τJ ∼ h̄

100 meV
≈ 10−14 s.

For such transitions one expects that intervention is possible and would indeed influence
the transition. In other transitions there are collective, condensed matter effects that narrow
the bands; these should present yet richer possibilities for the realization of effects arising
from the finiteness of the jump time.

Probably the best known example of successful intervention is the stability of chiral
isomers, attributed to environmental monitoring. In this case it has been shown that a QZE-
like effect prevents their passage to non-chiral theoretical ground states. We give more
details (plus references) in section 4.

3. Observational line broadening

To calculate the effect of monitoring the system’s state we introduce a Hamiltonian
description. Much of the calculation is as in [4]. There are three levels: state 1 the
ground state, 2 the metastable state and 3 the short-lived state. As Hamiltonian we take

H =
∑

j=1,2,3

Wj |j〉〈j | +
∑
k

ωka
†
kak +

∑
k

[a†k (φk|1〉〈2| +8k|1〉〈3|)+ adjoint] (9)

with |j〉 the atomic states,ak photon operators, andφ and 8 matrix elements for the
corresponding transitions.

To study the decay we solve the time-dependent problem. Initially the atom is in state 2.
The electromagnetic field is described by photon number. (Use of coherent states is more
customary at this point, but for an intense field photon-number spread is not significant.)
The mode corresponding to the laser beam is highly excited. We designate its frequency�0,
which equalsW3−W1 (h̄ = 1 in this section), since it stimulates the 1↔ 3 transition. The
initial state of the field isN0 photons in this mode; all other field modes have zero photons.
We thus write the initial state|2, 0, N0〉, the ‘0’ in the second argument referring to field
modes other than�0, and the ‘2’ the atomic state (which we designated ‘|2〉’ above). From
this state, with amplitudeφk, the system can go to states of the form|1, 1k, N0〉. From here,
the largest amplitude by far is to go to|3, 1k, N0 − 1〉. This is because, first,|8| � |φ|
(since the 3↔ 1 transition is much faster than the 2↔ 1 transition), and, second, because
of the factor

√
N0 that a†0 introduces. Once in|3, 1k, N0 − 1〉, the largest amplitude is to

drop right back to|1, 1k, N0〉, now because of the factor
√
N0 alone, since matrix elements

for other-directional radiative decays are also large. However, since our interest is primarily
in the first step of this process, the decay 2→ 1, these smaller, later effects do not change
our conclusions. The general expression for the state vector is therefore

9(t) =
∑
k

xk(t)|3, 1k, N0− 1〉 + y(t)|2, 0, N0〉 +
∑
k

zk(t)|1, 1k, N0〉. (10)

The initial conditions arey(0) = 1, all others 0. This yields the equations of motion

iẋk = Ekxk +
√
N08

∗
0zk iẏ =

∑
k

φ∗k zk iżk = Ekzk + φky +
√
N080xk (11)

where by convention we takeW2 + N0�0 = 0 andEk ≡ ωk − (W2 −W1). By taking the
Laplace transform, making use of the boundary conditions, and definingB2 ≡ N0|80|2 we



Letter to the Editor L297

find

y(t) = 1

2π i

∫ ε+i∞

ε−i∞

est

s +Q(s) ds with Q(s) ≡
∑
k

|φk|2 s + iEk
(s + iEk)2+ B2

. (12)

During intermediate times (which is when the vast majority of decays take place) this is
well approximated by the pole in the integrand. This is found by taking the continuum
approximation for the photon-mode integration and assuming Res (which is essentially the
decay rate) is small and negative. The continuum approximation encompasses the following
assignments and transformations:

Ek → E
∑
k

|φk|2→
∫

dE ρ(E)|ϕ(E)|2 ≡
∫

dE g(E)

whereρ is the density of states,ϕ(E) are scaled matrix elements (φk ∼ φ(E)/
√
V, with V

a fiducial volume) and we defineg ≡ ρ|ϕ|2. With B = 0, the expression(s +Q(s))−1 has
a pole near the imaginary axis giving the usual decay rate (as we will see below). With
non-zeroB there is a bit more algebra. One first shows that†

Q(s) = −iP
∫ ∞
−∞

dE g(E)
E

E2− B2
+ π g(B)+ g(−B)

2
(13)

with ‘P ’ the principal value. Writing

s = −γ /2+ i1E (γ,1E ∈ R) (14)

the value of the pole in the Laplace inversion is

1E = P
∫

dE g(E)
E

E2− B2

γ = π [g(B)+ g(−B)] = π [ρ(B)|ϕ(B)|2+ ρ(−B)|ϕ(−B)|2]. (15)

Note that forB = 0 one recovers the usual ‘Golden Rule’ formula. Furthermore, ifg(E)

is not a rapidly varying function ofE (and in general there is no reason it should be), the
decay rate, in the presence ofB, is substantially unchanged. This was the experimental
observation [1]. (In [4] we propose that for much stronger fields the decay should be halted,
basically because of the decline ing(B), but this is another matter.)

Nevertheless, by examining the spectrum of emitted photons, we will see that
observation does induce a change. The line shape is essentially

I (k) ≡ lim
t→∞[|xk(t)|2+ |zk(t)|2]

(as a function ofk). This can be calculated in a straightforward way by going back to
equation (11) and solving forxk(t) and zk(t), taking y(t) from equation (12). Ify(t) is
dominated by the pole contribution, it is given byy(t) = exp[−it (1E − γ /2)]. Inserting
this in the two relevant equations in equation (11), gives thexks andzks as forced oscillators,
independent, for differentk. It is easy to show that

I (k) ∼ 1

(Ek −1E − B)2+ γ 2/4
+ 1

(Ek −1E + B)2+ γ 2/4
. (16)

This means that the line is split, no longer centred about the original energy (shifted by
1E), but pushed in both directions by an amountB. For smallB this will show up as a line
broadening, only forB > γ/2

√
3 will the peaks be separated. This broadening (or splitting)

† Note that to lowest orderQ is independent ofs. See [4] for details of the derivation.
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occurs because the decay episode has beentemporally localizedby a time whose inverse
is determined byB (in appropriate units). For this reason we call the effect ‘observational
broadening’.

The experimental observation of this effect need not be carried out under the demanding
circumstances of the first quantum jump experiments, namely with a single atom. Rather,
more data could be collected by having many atoms, so long as collisional broadening did
not overwhelm the effect to be observed.

4. Discussion and conclusions

This letter takes up two related issues. The first is the duration of a ‘quantum jump’. The
second concerns changes in the decay that result from observations that give meaning to
the first.

Our definition of jump time yields a quantity that is basically inverse bandwidth. It
should be considered aminimal jump time. Our estimate of this time for an atomic transition
gave a small value, about 10−20 s. However, we observed that for other transitions the
time can be considerably longer, allowing experimental probes. It turns out that such a
phenomenon is already known, and our discussion in terms of jump time can be considered
simply as a shift of perspective.

Consider the chirality of certain isomers. In [10], Cina and Harris argue that the
inversion transition between left- and right-handed versions of some isomers is inhibited by
environmental interruptions. The environment provides a ‘continuous’ check of whether it
has flipped or not. In practice, the meaning of ‘continuous’ is essentially that the timescale
should be short on the jump timescale. In other words, the transition suppression due to
environmental jostling effectively gives an example of the QZE.

Although observations that are intrusive enough to monitor the jump have little effect
on its lifetime, as experimentally established, neverthelessthey do change other properties.
This is a vindication of Bohr’s point of view on the effect of observation (but it says nothing
about the more elaborate constructs of the Copenhagen interpretation). Moreover, it explains
the appearance of the high energies that one might have wanted to associate with the jump
times. For example, our 10−20 s jump time for an atom could suggest MeV scale energies;
where in an atom could there be such an energy? The answer is that an actual experiment
that pinned the transition to such times would involve the many degrees of freedom and
associated energy contributions of the apparatus. A milder temporal localization, such as
that in [1], would involve correspondingly smaller energies. The quantitative measure of
this is the split (or broadening),±B, that is seen in the line shape, equation (16).

The feasibility of observing ‘observational line broadening’ (or splitting) will depend
on (among other things) two important factors. First, there is the value of ‘B ’ ≡

√
N0|80|2,

whereN0 is the effective photon number excitation at the location of the atom and80

the transition matrix element for the short-lived transition. Second, there will be a playoff
between the value of increasing the number of atoms studied—for a stronger decay-photon
signal—and the resulting problems, such as collisional broadening, that would interfere with
the observation.

I wish to thank R Bidaux, B Gaveau, R Harris, A Meixner, E Mihokova, S Pascazio
and P Pechukas for helpful discussions. I also wish to thank Columbia University for its
kind hospitality. This work was supported in part by the United States National Science
Foundation grant PHY 93 16681. A preliminary report on parts of the present paper was
presented in [7].
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